China Custom Fe/FC/Fee CZPT Type Telescopic Hydraulic Cylinder vacuum pump connector

Product Description

FE/FC/FEE CHINAMFG Type Telescopic Hydraulic Cylinder


Model The first stage rod diameter Stroke Closed length Open length
WTPK 3TG F5*72 5″ 1829mm 945mm 2773mm
WTPK 3TG F5*84 5″ 2134mm 1046mm 3180mm
WTPK 3TG F5*107 5″ 158/136/116/95 1229mm 3961mm
WTPK 3TG F5*126 5″ 3216mm 1386mm 4602mm
WTPK 3TG F6*86 6″ 3216mm 1038mm 3241mm
WTPK 3TG F6*104 6″ 2640mm 1194mm 3834mm
WTPK 3TG F6*107 6″ 2732mm 1289mm 3961mm
WTPK 3TG F6*111 6″ 2819mm 1268mm 4087mm
WTPK 3TG F6*120 6″ 3048mm 1359mm 4407mm
WTPK 3TG F6*126 6″ 3208mm 1386mm 4594mm
WTPK 3TG F6*140 6″ 3562mm 1519mm 5081mm
WTPK 4TG F6*135 6″ 3429mm 1199mm 4628mm
WTPK 4TG F6*156 6″ 3962mm 1362mm 5324mm
WTPK 3TG F7*110 7″ 2810mm 1271mm 4081mm
WTPK 3TG F7*120 7″ 3048mm 1349mm 4397mm
WTPK 3TG F7*124 7″ 3172mm 1392mm 4564mm
WTPK 3TG F7*129 7″ 3277mm 1435mm 4712mm
WTPK 3TG F7*140 7″ 3567mm 1524mm 5091mm
WTPK 3TG F7*150 7″ 3810mm 1613mm 5423mm
WTPK 4TG F7*120 7″ 3048mm 1349mm 4168mm
WTPK 4TG F7*135 7″ 3429mm 1230mm 4659mm
WTPK 4TG F7*140 7″ 3556mm 1263mm 4819mm
WTPK 4TG F7*156 7″ 3962mm 1365mm 5327mm
WTPK 4TG F7*161 7″ 4108mm 1405mm 5513mm
WTPK 4TG F7*167 7″ 4242mm 1432mm 5674mm
WTPK 4TG F7*180 7″ 4572mm 1552mm 6124mm
WTPK 4TG F8*148 8″ 3753mm 1308mm 5061mm
WTPK 4TG F8*156 8″ 3962mm 1365mm 5327mm
WTPK 4TG F8*161 8″ 4064mm 1416mm 5480mm
WTPK 4TG F8*170 8″ 4318mm 1454mm 5481mm
WTPK 4TG F8*180 8″ 4572mm 1518mm 6090m
WTPK 5TG F8*170 8″ 4318mm 1267mm 5585mm
WTPK 5TG F8*190 8″ 48 

Certification: RoHS, CE, ISO9001
Pressure: Medium Pressure
Work Temperature: Normal Temperature
Acting Way: Single Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
US$ 500/Piece
1 Piece(Min.Order)




hydraulic cylinder

Can hydraulic cylinders be integrated with advanced control systems and automation?

Yes, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and overall performance. The integration of hydraulic cylinders with advanced control systems allows for more sophisticated and precise control over their operation, enabling automation and intelligent control. Here’s a detailed explanation of how hydraulic cylinders can be integrated with advanced control systems and automation:

1. Electronic Control:

– Hydraulic cylinders can be equipped with electronic sensors and transducers to provide real-time feedback on their position, force, pressure, or velocity. These sensors can be integrated with advanced control systems, such as programmable logic controllers (PLCs) or distributed control systems (DCS), to monitor and control the operation of hydraulic cylinders. By integrating electronic control, the position, speed, and force of hydraulic cylinders can be precisely monitored and adjusted, allowing for more accurate and automated control.

2. Closed-Loop Control:

– Closed-loop control systems use feedback from sensors to continuously monitor and adjust the operation of hydraulic cylinders. By integrating hydraulic cylinders with closed-loop control systems, precise control over position, velocity, and force can be achieved. Closed-loop control enables the system to automatically compensate for variations, external disturbances, or changes in operating conditions, ensuring accurate and consistent performance. This integration is particularly beneficial in applications that require precise positioning, synchronization, or force control.

3. Proportional and Servo Control:

– Hydraulic cylinders can be integrated with proportional and servo control systems to achieve finer control over their operation. Proportional control systems use proportional valves to regulate the flow and pressure of hydraulic fluid, allowing for precise adjustment of cylinder speed and force. Servo control systems, on the other hand, combine feedback sensors, high-performance valves, and advanced control algorithms to achieve extremely precise control over hydraulic cylinders. Proportional and servo control integration enhances the responsiveness, accuracy, and dynamic performance of hydraulic cylinders.

4. Human-Machine Interface (HMI):

– Hydraulic cylinders integrated with advanced control systems can be operated and monitored through human-machine interface (HMI) devices. HMIs provide a graphical user interface that allows operators to interact with the control system, monitor cylinder performance, and adjust parameters. HMIs enable operators to set desired positions, forces, or velocities, and visualize the real-time feedback from sensors. This integration simplifies the operation and monitoring of hydraulic cylinders, making them more user-friendly and facilitating seamless integration into automated systems.

5. Communication and Networking:

– Hydraulic cylinders can be integrated into communication and networking systems, enabling them to be part of a larger automated system. Integration with industrial communication protocols, such as Ethernet/IP, Profibus, or Modbus, allows for seamless information exchange between the hydraulic cylinders and other system components. This integration enables centralized control, data logging, remote monitoring, and coordination with other automated processes. Communication and networking integration enhance the overall efficiency, coordination, and integration of hydraulic cylinders within complex automation systems.

6. Automation and Sequential Control:

– By integrating hydraulic cylinders with advanced control systems, they can be seamlessly incorporated into automated processes and sequential control operations. The control system can execute predefined sequences or programmed logic to control the operation of hydraulic cylinders based on specific conditions, inputs, or timing. This integration enables the automation of complex tasks, such as material handling, assembly operations, or repetitive motions. Hydraulic cylinders can be synchronized with other actuators, sensors, or devices, allowing for coordinated and automated operation in various industrial applications.

7. Predictive Maintenance and Condition Monitoring:

– Advanced control systems can also enable predictive maintenance and condition monitoring for hydraulic cylinders. By integrating sensors and monitoring capabilities, the control system can continuously monitor the performance, health, and condition of hydraulic cylinders. This integration allows for the detection of abnormalities, wear, or potential failures in real-time. Predictive maintenance strategies can be implemented based on the collected data, optimizing maintenance schedules, reducing downtime, and enhancing the overall reliability of hydraulic systems.

In summary, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and performance. The integration allows for electronic control, closed-loop control, proportional and servo control, human-machine interface (HMI) interaction, communication and networking, automation and sequential control, as well as predictive maintenance and condition monitoring. These integrations enable more precise control, automation, improved efficiency, and optimized performance of hydraulic cylinders in various industrial applications.

hydraulic cylinder

Ensuring Controlled and Safe Force Application in Heavy Machinery with Hydraulic Cylinders

Hydraulic cylinders play a critical role in heavy machinery by ensuring controlled and safe force application. The ability to exert and control high forces is essential for heavy machinery operations, such as lifting, pressing, pushing, or pulling heavy loads. Let’s explore how hydraulic cylinders ensure controlled and safe force application in heavy machinery:

  1. Force Control: Hydraulic cylinders provide precise force control capabilities. The hydraulic system’s pressure can be adjusted to regulate the force exerted by the cylinder. This control allows operators to apply the necessary force for a specific task while ensuring it remains within safe limits. By accurately controlling the force, hydraulic cylinders help prevent excessive force that could damage the machinery or compromise the safety of the operation.
  2. Load Balancing: In heavy machinery, multiple hydraulic cylinders are often used in conjunction to distribute and balance the applied force. By using multiple cylinders, the load can be evenly distributed across the machinery, minimizing stress concentrations and ensuring controlled force application. This load balancing approach enhances the stability and safety of the machinery, preventing uneven loading that could lead to structural issues or instability.
  3. Safety Valves: Hydraulic systems in heavy machinery are equipped with safety valves to protect against excessive force or overloading. Safety valves are designed to release hydraulic fluid from the cylinder when the force exceeds a predetermined threshold. This prevents the force from reaching dangerous levels, safeguarding the machinery and preventing potential accidents or damage. Safety valves provide an additional layer of safety and ensure controlled force application even in unexpected circumstances.
  4. Pressure Relief Systems: Hydraulic cylinders incorporate pressure relief systems to further enhance safety. These systems are designed to relieve excess pressure in the hydraulic system, which could occur due to factors such as thermal expansion or system malfunctions. By relieving excess pressure, the pressure relief systems prevent sudden and uncontrolled force surges, maintaining safe and controlled force application in heavy machinery.
  5. Structural Integrity: Hydraulic cylinders are designed to withstand the high forces and loads associated with heavy machinery applications. The cylinders are constructed using robust materials, such as high-strength steel, and undergo rigorous testing to ensure their structural integrity. This ensures that the cylinders can safely handle the forces applied during heavy machinery operations without experiencing failures or deformations that could compromise the safety and controlled force application.

In summary, hydraulic cylinders ensure controlled and safe force application in heavy machinery through force control, load balancing, safety valves, pressure relief systems, and robust structural design. These features and design considerations enable operators to exert the necessary force while maintaining safety and preventing excessive loads or force surges. By incorporating hydraulic cylinders into heavy machinery, manufacturers can achieve controlled force application, enhance operational safety, and protect the machinery from damage or failure.

hydraulic cylinder

What factors should be considered when selecting the right hydraulic cylinder for an application?

When selecting the right hydraulic cylinder for an application, several important factors need to be considered. These factors help ensure that the chosen hydraulic cylinder is suitable for the specific requirements of the application and will perform reliably. Here are the key factors to consider:

1. Load Requirements:

– One of the crucial factors to consider is the load requirement of the application. Determine the maximum load that the hydraulic cylinder needs to handle. Consider both the static load (when the cylinder is stationary) and the dynamic load (when the cylinder is in motion). The load requirement will impact the cylinder’s bore size, rod diameter, and overall strength. Choose a hydraulic cylinder with a load capacity that exceeds the application’s maximum load to ensure safety and longevity.

2. Stroke Length:

– The stroke length refers to the distance the hydraulic cylinder needs to extend and retract to perform the desired motion. Measure the required stroke length based on the application’s operational requirements. It is essential to choose a hydraulic cylinder with a stroke length that matches or exceeds the required distance. Consider any potential variations or adjustments in the stroke length that may be needed in the future.

3. Operating Pressure:

– Consider the operating pressure required for the application. The hydraulic cylinder must be capable of withstanding the maximum pressure within the hydraulic system. Ensure that the selected cylinder has a pressure rating that exceeds the application’s maximum operating pressure. This ensures safety and prevents premature failure.

4. Speed Requirements:

– Determine the required speed of the hydraulic cylinder’s movement for the application. Consider both the extension and retraction speeds. Select a cylinder that can achieve the desired speed while maintaining precise control and stability. It is important to choose a cylinder that can handle the required speed without compromising performance or safety.

5. Mounting:

– Evaluate the available space and mounting requirements for the hydraulic cylinder. Consider the mounting type (such as flange, foot, trunnion, or clevis), the available mounting points, and any specific mounting constraints. Ensure that the selected cylinder can be easily and securely mounted in the desired location.

6. Environmental Factors:

– Assess the environmental conditions in which the hydraulic cylinder will operate. Consider factors such as temperature extremes, humidity, exposure to chemicals, dust, or corrosive substances. Choose a cylinder that is designed to withstand the specific environmental conditions of the application. This may involve selecting appropriate materials, coatings, or seals to ensure the longevity and performance of the cylinder.

7. Cylinder Configuration:

– Determine the appropriate cylinder configuration based on the application’s requirements. Consider factors such as single-acting or double-acting cylinders, telescopic cylinders for limited space, or custom configurations for unique applications. Evaluate the specific needs of the application to select the most suitable cylinder configuration.

8. Maintenance and Serviceability:

– Consider the maintenance and service requirements of the hydraulic cylinder. Evaluate factors such as ease of access for maintenance, availability of spare parts, and the reputation of the manufacturer or supplier in terms of customer support and after-sales service. Choosing a reliable and reputable brand can ensure ongoing support and availability of spare parts when needed.

9. Compliance and Standards:

– Depending on the industry and application, certain compliance standards may need to be met. Consider any industry-specific regulations, safety standards, or certifications that the hydraulic cylinder should comply with. Ensure that the selected cylinder meets the required standards and certifications for the application.

10. Cost and Budget:

– Finally, consider the cost and budget for the hydraulic cylinder. While it is important to select a cylinder that meets the application’s requirements, it is also necessary to consider the overall cost-effectiveness. Evaluate the initial purchase cost, long-term maintenance costs, and the expected lifespan of the cylinder. Balancing the cost and quality will help in selecting a hydraulic cylinder that provides the best value for the application.

By considering these factors in the selection process, it becomes possible to choose the right hydraulic cylinder that meets the specific requirements of the application in terms of load capacity, stroke length, operating pressure, speed, mounting, environmental conditions, maintenance needs, compliance, and cost-effectiveness. Proper selection ensures optimal performance, reliability, and longevity of the hydraulic cylinder in the intended application.

China Custom Fe/FC/Fee CZPT Type Telescopic Hydraulic Cylinder   vacuum pump connector	China Custom Fe/FC/Fee CZPT Type Telescopic Hydraulic Cylinder   vacuum pump connector
editor by CX 2023-10-17

Leave a Reply

Your email address will not be published. Required fields are marked *